Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Gary L. Breneman,* Michael Fields and O. Jerry Parker

Department of Chemistry and Biochemistry, 226 SCI, Eastern Washington University, Cheney, WA 99004, USA

Correspondence e-mail: gbreneman@ewu.edu

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.024 wR factor = 0.070Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ -hypophosphito-bis[(2,2'-bipyridine)copper(II)] nitrate

The structure of blue $[Cu_2(O_2PH_2)_2(C_{10}H_8N_2)_2](NO_3)_2$ consists of dimeric $[Cu(O_2PH_2)(bipy)]$ subunits (bipy = 2,2′-bipyridine) joined by two hypophosphite bridging ligands, with each metal center in a distorted planar arrangement. These joined subunits exist as a discrete cation with the equivalent of two nitrates as counter-ions. The subunits have a four-coordinated distorted square-planar arrangement of N and O atoms from the 2,2′-bipyridine and hypophosphite ligands, with the fifth and sixth positions of the copper coordination occupied by neighboring O atoms of the nitrate counter-ions.

Received 18 April 2002 Accepted 29 April 2002 Online 11 May 2002

Comment

The existence of compounds such as [Cu(NCS)₂(bipy)] (Parker et al., 1994) and the corresponding phenanthroline complex (Breneman & Parker, 1993) shows that the oxidation potential of copper(II) is reduced by the presence of 2,2'bipyridine (bipy) or 1,10-phenanthroline (phen) ligands. Compounds containing ligands such as hypophosphite which would normally be oxidized by copper(II) can co-exist as part of a stable bipyridine complex. The hypophosphite ligand, H₂PO₂⁻, was chosen as a potential bridging ligand for copper(II) complexes. The complex, [Cu₂(O₂PH₂)₂(bipy)₂](NO₃)₂, exists as discrete pairs of [Cu(O₂PH₂)(bipy)] subunits linked by the hypophosphite ligands to form a cation with a 2+ charge. Two nitrate ions serve as the counter-ions in this compound. The structure of a copper(II) complex, $[Cu_2(O_2PH_2)_2(phen)_2](NO_3)_2$ (Parker et al., 1996), has been determined to have similar bridging by hypophosphite ligands. Two related structures, $[Mn(O_2PH_2)_2(bipy)]_n$ (Weakley, 1978a) and $[Mn(O_2PH_2)_2(phen)]_n$ (Weakley, 1978b), have been shown to involve bridging through the oxygen ends of the two hypophosphite ligands (H₂PO₂⁻).

$$\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

Selected bond distances and angles are in Table 1. A plot of the complex is shown in Fig. 1, with the numbering system indicated. The cation, $\left[\text{Cu}_2(\text{O}_2\text{PH}_2)_2(\text{bipy})_2\right]^{2+}$, consists of

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

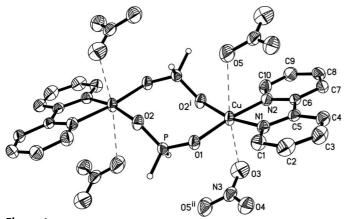


Figure 1 Displacement ellipsoid (50% probability) plot of [Cu₂(O₂PH₂)₂(bipy)2](NO3)2, showing the atom-numbering scheme. H atoms on C atoms have been omitted. [Symmetry codes: (i) -x, -y, 1-z; (ii) x-1, y, z.]

discrete pairs of [Cu(O₂PH₂)(bipy)] subunits which are bridged by the hypophosphite ligands in a symmetrical end-toend fashion. The subunits have a four-coordinated distorted square-planar arrangement of N atoms from the 2,2'-bipyridine and O atoms from the hypophosphite ligands about the central Cu atom. The cation interacts through the fifth and sixth coordination positions on the copper with neighboring O atoms on the nitrate counter-ions. The Cu-N(bipy) distances are 1.9799 (18) and 1.9794 (19) Å for Cu-N1 and Cu-N2, respectively, with an N1-Cu-N2 angle of 81.62 (8)°. These distances and the bite angle are similar to those in [Cu(NCS)₂(bipy)] (Parker et al., 1994). The Cu—O1 and Cu— O2ⁱ distances are 1.9466 (15) and 1.9385 (15) Å, with an O1— Cu-O2ⁱ angle of 91.62 (7)° [symmetry code: (i) -x, -y, 1-z]. The square-planar arrangement about the copper is slightly distorted, the N1-Cu-O2¹ and N2-Cu-O1 angles being 167.45 (7) and 173.22 (7)°. The fifth and sixth coordination positions of copper have Cu—O(nitrate) distances of 2.564 (2) and 2.819 (2) A for Cu-O3 and Cu-O5, with an O3-Cu-O5 angle of 169.39 (7)°. Typical angles are: O3-Cu-O1 85.54 (7)°; O3-Cu-O2ⁱ 97.72 (7)°; O3-Cu-N1 93.67 (8)°; and O3−Cu−N2 90.00 (8)°.

The end-to-end bridging hypophosphite ligands have P-O1 and $P-O2^{i}$ distances of 1.5155 (15) and 1.5085 (16) Å, with an O1-P-O2 angle of 114.79 (9)°. These distances and angle are very close to those in [Cu₂(O₂PH₂)₂(phen)₂](NO₃)₂ (Parker et al., 1996), $[Mn(O_2PH_2)_2(bipy)]_n$ (Weakley, 1978a) and $[Mn(O_2PH_2)_2(phen)]_n$ (Weakley, 1978b).

Experimental

[Cu₂(O₂PH₂)₂(bipy)₂](NO₃)₂ was prepared by the slow addition of a 15 ml solution of 2,2'-bipyridine (1.56 g, 10.0 mmol) in ethanol to a 20 ml solution of Cu(NO₃)₂·3H₂O (2.41 g, 10.0 mmol) dissolved in water. To the resulting solution, which contained a yellow-green precipitate, 20 ml of a solution containing NaH₂PO₂·H₂O (3.00 g, 20.0 mmol) dissolved in water was slowly added with continuous stirring. The blue solid product was dissolved in DMSO and crystals suitable for X-ray analysis were obtained by evaporation of the solvent.

Crystal data

$[Cu_2(H_2PO_2)_2(C_{10}H_8N_2)_2](NO_3)_2$	$D_x = 1.851 \text{ Mg m}^{-3}$
$M_r = 346.73$	Mo Kα radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 6.727 (3) Å	reflections
b = 12.8420 (13) Å	$\theta = 20.0 – 24.9^{\circ}$
c = 15.209 (7) Å	$\mu = 1.91 \text{ mm}^{-1}$
$\beta = 108.72 (2)^{\circ}$	T = 295 K
$V = 1244.4 (8) \text{ Å}^3$	Prism, blue
Z = 4	$0.50 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Enraf-Nonius CAD-4	$R_{\rm int} = 0.010$
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
$\theta/2\theta$ scans	$h = -7 \rightarrow 7$
Absorption correction: ψ scan	$k = 0 \rightarrow 15$
MolEN (Fair, 1990)	$l = 0 \rightarrow 17$
$T_{\min} = 0.513, T_{\max} = 0.683$	1 standard reflection
2251 measured reflections	frequency: 167 min
2165 independent reflections	intensity decay: 1.1%
2090 reflections with $I > 2\sigma(I)$	

Refinement

2	- 2 - 2
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0366P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	+ 0.9392P]
$wR(F^2) = 0.070$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.16	$(\Delta/\sigma)_{\text{max}} = 0.001$
2165 reflections	$\Delta \rho_{\text{max}} = 0.32 \text{ e Å}^{-3}$
187 parameters	$\Delta \rho_{\min} = -0.28 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

Cu-O2i	1.9385 (15)	Cu-N1	1.9799 (18)
Cu-O1	1.9466 (15)	Cu-O3	2.564(2)
Cu-N2	1.9794 (19)	Cu-O5	2.819 (2)
$O2^{i}$ -Cu-O1	91.62 (7)	N1-Cu-O3	93.67 (8)
$O2^{i}-Cu-N2$	93.10 (7)	$O2^{i}$ -Cu-O5	82.31 (7)
O1-Cu-N2	173.22 (7)	O1-Cu-O5	106.06 (8)
$O2^{i}-Cu-N1$	167.45 (7)	N2-Cu-O5	79.42 (8)
O1-Cu-N1	94.69 (7)	N1-Cu-O5	85.52 (7)
N2-Cu-N1	81.62 (8)	O3-Cu-O5	169.39 (7)
$O2^{i}-Cu-O3$	97.72 (7)	O2-P-O1	114.79 (9)
O1-Cu-O3	84.54 (7)	P-O1-Cu	122.18 (9)
N2-Cu-O3	90.00 (8)	P-O2-Cu ⁱ	130.77 (10)

Symmetry code: (i) -x, -y, 1-z.

H atoms were set to ride on respective C atoms. Ideal positions were determined with C-H bond lengths = 0.96 Å, P-H bond lengths = 1.27 Å and $U_{iso} = 0.08 \text{ Å}^2$.

Data collection: CAD-4 Software (Schagen et al., 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

The financial support for this study by the Northwest Institute for Advanced Studies at Eastern Washington University is gratefully acknowledged.

References

Breneman, G. L. & Parker, O. J. (1993). Polyhedron, 12, 891-895. [Order of first two authors has been reversed to match CSD, please check] Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

metal-organic papers

Parker, O. J., Harvey, R. M. & Breneman, G. L. (1996). Acta Cryst. C52, 871-

Parker, O. J., Wilson, B. L. & Breneman, G. L. (1994). Acta Cryst. C50, 1681-1683.

Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Sheldrick, G. M. (1997). *SHELXL*97. University of Göttingen, Germany. Sheldrick, G. M. (1990). *SHELXTL/PC*. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Weakley, T. J. R. (1978a). Acta Cryst. B34, 281-282.

Weakley, T. J. R. (1978b). Acta Cryst. B34, 3756-3758.